

Marine Clean Fuel Program

**Fuel Right Global
Wilmington, DE**

2025

About Us

- ❖ 30 years in business
- ❖ USA manufacturer
- ❖ Fuel Additives
- ❖ Proprietary blends
- ❖ In-house research lab
- ❖ Serve multiple markets
- ❖ International experience
- ❖ GHS/REACH/OSHA/WHMIS

Disruptive Technology

Copyright © Fuel Right Global, LLC

Fuel Right

- Catalyst
- Lubricity
- Biocide

Clean Fuel - free of sludge contamination, corrosion by-products and water from the source of supply enhances the performance of the overall system by reducing maintenance and eliminating factors affecting engine performance.

Fuel
Right

Products

30K concentrate

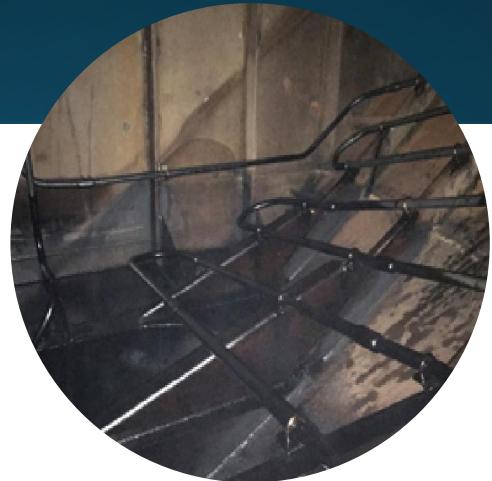
- 1:30.000

15K

- 1:15.000
- With fuel line anti-freeze

ProActive

- 1:10.000
- With enhanced lubricity



Engine Experience

- MAK
- Daihatsu
- Hyundai Himsen
- Guangzhou
- Wartsila
- ITO
- NIIGATA
- Caterpillar
- Cummins
- MAN
- Volvo Penta
- Henan
- Yanmar
- Hitachi
- DMD Man B&W
- MTU
- Sulzer
- Wechai

Clean Fuel Tanks

ELIMINATE BIO-SLUDGE

ELIMINATE
PRESSURE WASHING

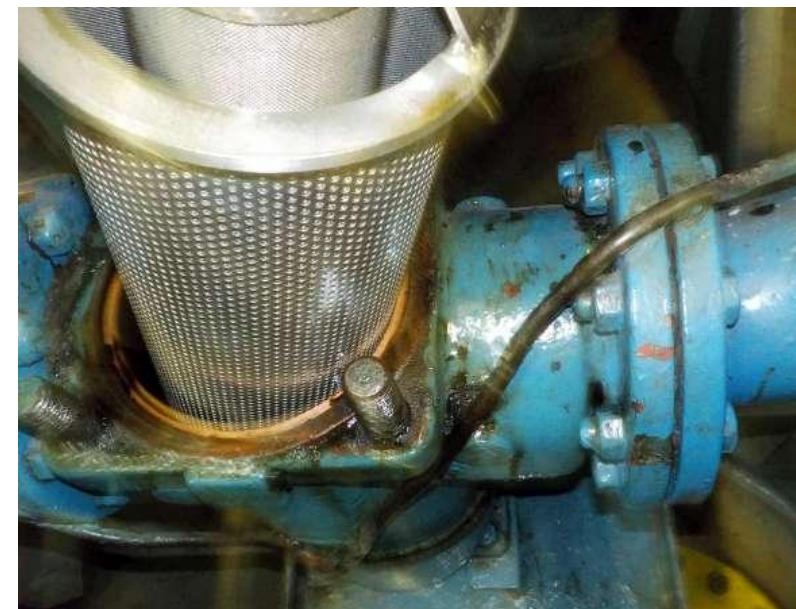
REDUCED
ENVIRONMENTAL
WASTE

PROTECTION FROM
CORROSION

Fuel
Right
X

Extended Injector Life

Longer service intervals
between rebuilds



Clean purifiers, strainers, filters

- ⌚ Extended service intervals
- ⌚ Reduced deposit build up on strainers
- ⌚ Reduced wear on purifiers components

Strainers

M/V Sheila Ship Engineer

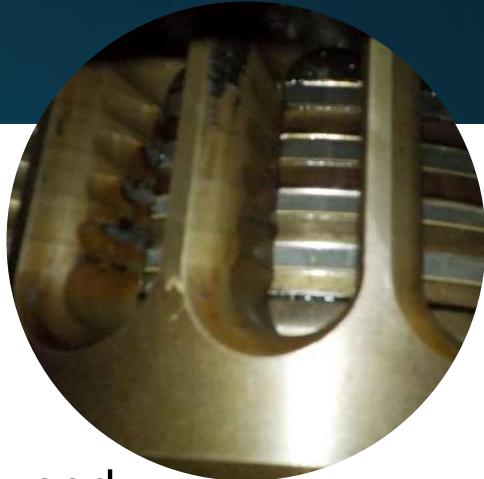
- “routine cleaning of filters and purifiers they told me not very dirty. long-term during our routine inspection for under piston and scavenge space is much better”
- “We would definitely be interested in the long-term usage”

Elin Poseidon (ELIN Shipping)

8.000 hours with
minimal scoring

Images provide by Elin Ship

Fuel
Right


No hard
carbon
deposits

Reduced Carbon Deposits

Reduced carbon deposits in exhaust ports, exhaust valves, cylinder crown and skirts

Reduced cylinder scoring

Improved lubricating oil life

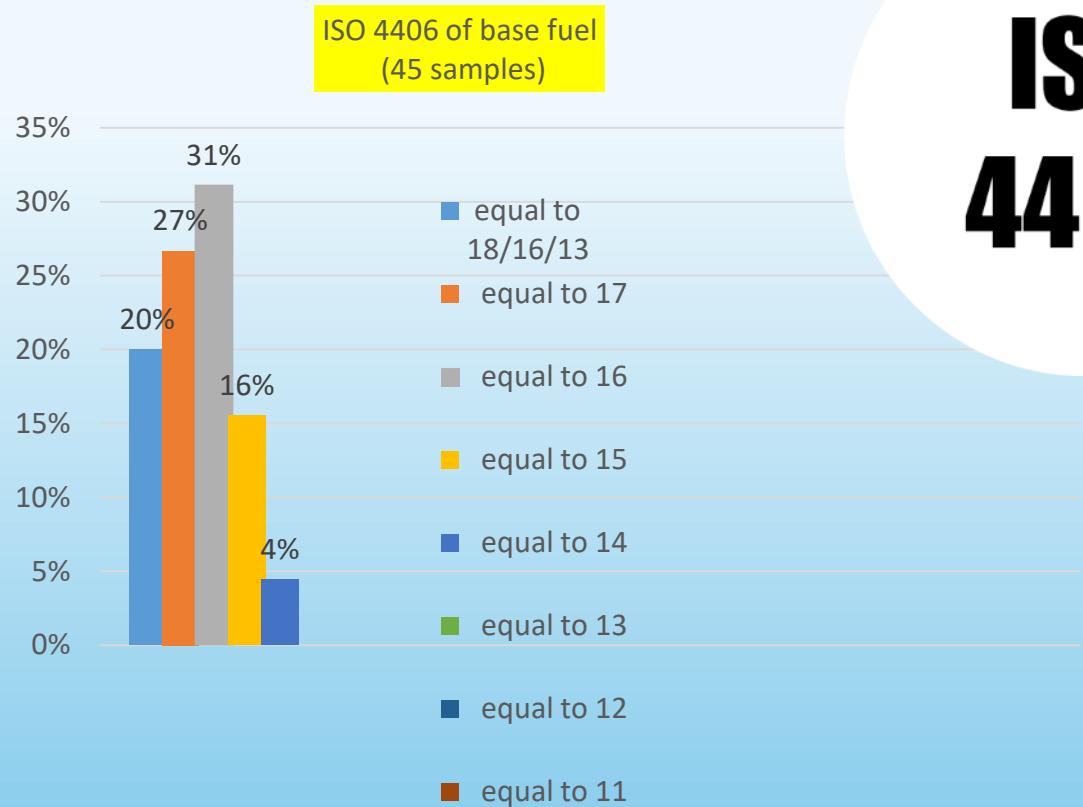
Fuel Right

Cleaner Fuel

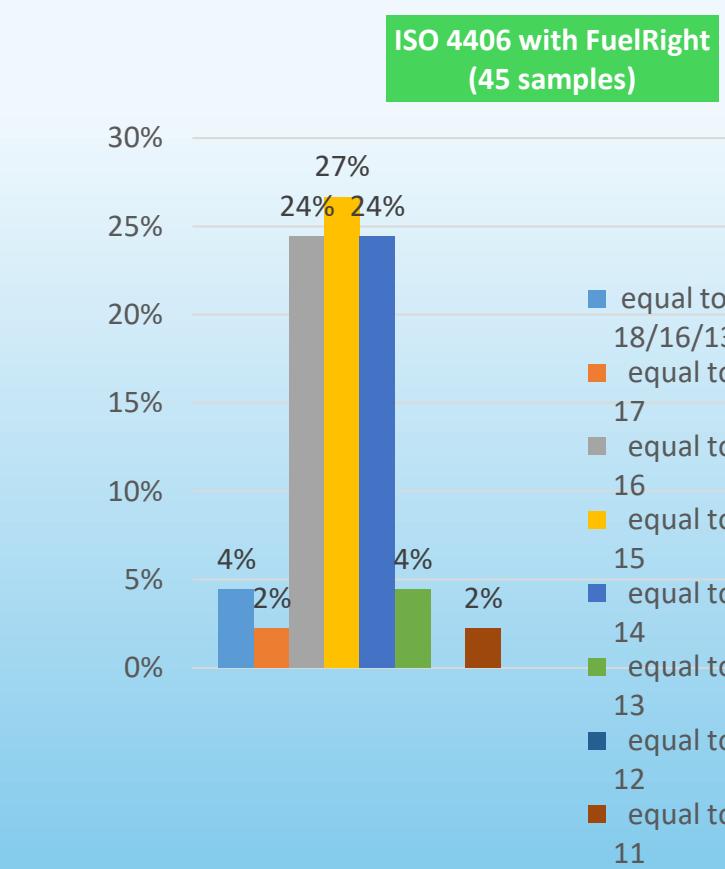
Removal of
excess
water

Break down
of
suspended
particulate

Enhance ISO
4406 fuel
cleanliness
values

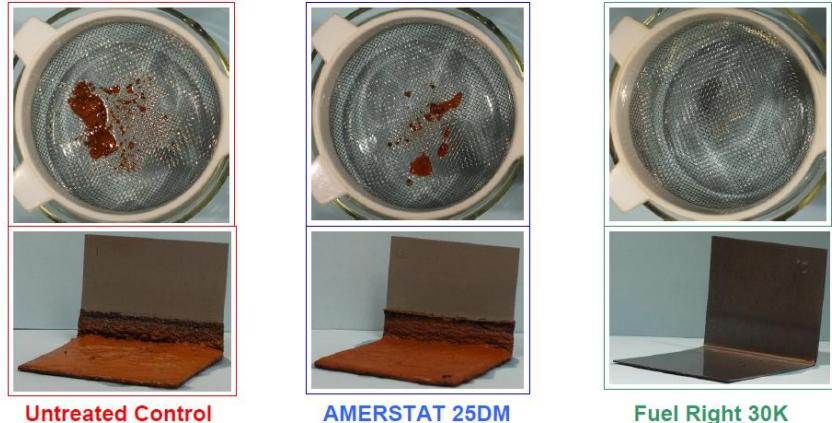

**ISO
4406**

**Fuel
Right**
X


ISO 4406

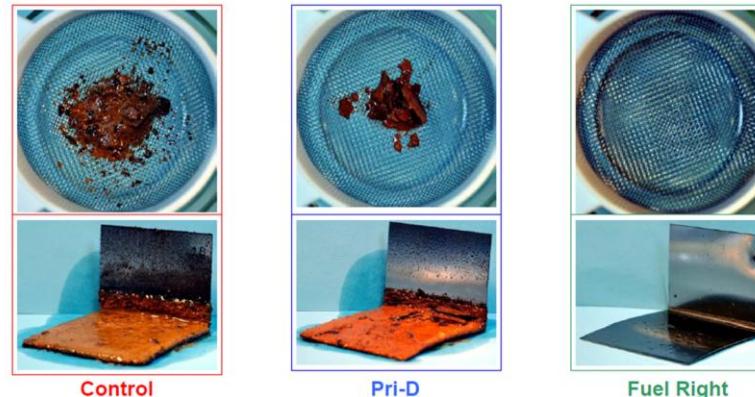
ISO code numbers	Type of system	Typical components	Sensitivity
23 / 21 / 17	Low pressure systems with large flow rates.	Ram pumps	Low
20 / 18 / 15	Typical cleanliness of new hydraulic systems from the manufacturer.	Flow control valves Cylinders	Average
19 / 17 / 14	Low pressure heavy industrial applications where long-life is important.	Gear pumps/motors	Important
18 / 16 / 13	World Wide Fuel Charter cleanliness standard for diesel fuel delivered from the filling station nozzle. High quality reliable systems General machine requirements	Injector valve and high pressure pumps/motors Directional and pressure control valves	Critical
17 / 15 / 12	Highly sophisticated systems and hydrostatic transmissions	Proportional valves	Critical
16 / 14 / 11	Performance servo and high Pressure long-life systems e.g. Aircraft machine tools, etc.	Industrial servovalves	Critical
15 / 13 / 09	Silt sensitive control system with very high reliability	High performance servovalves	Super critical

ISO 4406


78% < 18
51% < 17
20% < 16

83% < 18
81% < 17
57% < 16

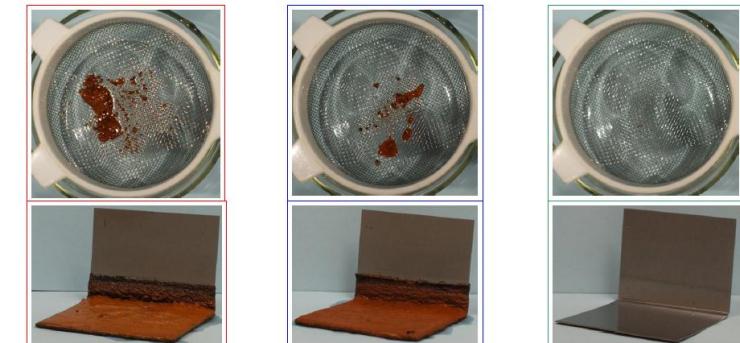
Jar Test Results – Series XLVIII
(18 Months ending 8/25)


AMERSTAT® 25DM (Drew Marine®)

SCORES:	Sludge Growth	Corrosion	TOTAL
Control	2	2	4
AMERSTAT	5	5	10
Fuel Right	10	10	20

Jar Test Results – Series XX
(18 Months ending 03/09)

Pri-D (Power Research)



SCORES:	Coupon	Strainer	Corrosion	TOTAL
Control	2	2	2	6
Pri-D	1	5	2	8
Fuel Right	10	10	10	30

Sludge/Corrosion jar tests* comparison

Jar Test Results – Series XLVIII
(18 Months ending 8/25)

AMERSTAT® 25DM (Drew Marine®)

SCORES:	Sludge Growth	Corrosion	TOTAL
Control	2	2	4
AMERSTAT	5	5	10
Fuel Right	10	10	20

* Jar tests were developed and conducted by FuelRight

Determination of the filterability (Filter Blocking Tendency-FBT)

- ASTM D2068
- IP 387
- Standard test method for filter blocking tendency of distillate fuel oils
- This test method describes a procedure for determining the filter blocking tendency (FBT) of distillate fuel oils where the end use demands an exceptional degree of cleanliness.

Fuel Type	Standard Reference	Acceptable FBT Value	Remarks
Marine Distillate (DMA/DMB)	ISO 8217:2017 & 2024	≤ 2.52	Higher values indicate poor cleanliness or instability.
FAME Blends (up to B20)	EN 590 + Annex	≤ 2.52 (sometimes ≤ 2.00 preferred)	Oxidation stability or poor handling may increase FBT.

ANALYTICAL REPORT

Bureau Veritas Inspección y Testing S.L.
(Unipersonal) C.I.F.: ESB08658601
Laboratorio de análisis – Huelva
Polígono Industrial Nuevo Puerto S/N.
Palos de la Frontera, Huelva, Spain
959 369 335
CTDHuelvaLab@bureauveritas.com

Job No	23748-1	^Date of Sampling	---
^Customer	Prio Biocombustiveis*	Date of Reception	15-Jun-2023
^Grade	B7	Reported Date	15-Jun-2023
^Origin	---	Sample Package and Capacity	Bottle Glass Clear 500.00 mL
^Id	B7 + 60ppm Fuel Right 30K-EU	^Seal No	---
		^Y/Ref	---
		Item Description	Petroleum Products

After Additivation - Cargo Treatment

ESOJNJ23001891-017

Test	Method	Unit	Result
Free Water	IP 387B/17	--	-
Volume Pumped	IP 387B/17	mL	120
Final Pressure	IP 387B/17	kPa	105
FBT	IP 387B/17	--	2.69

AUTHORIZED SIGNATURE

Itziar Martinez, Laboratory Manager

. REPORT

Bureau Veritas Inspección y Testing S.L.
(Unipersonal) C.I.F.: ESB08658601
Laboratorio de análisis – Huelva
Polígono Industrial Nuevo Puerto S/N.
Palos de la Frontera, Huelva, Spain
959 369 335
CTDHuelvaLab@bureauveritas.com

Job No	23748-2	^Date of Sampling	---
^Customer	Prio Biocombustiveis*	Date of Reception	15-Jun-2023
^Grade	B7	Reported Date	15-Jun-2023
^Origin	---	Sample Package and Capacity	Bottle Glass Amber 500.00 mL
^Id	B7 + 100ppm Fuel Right 30K-EU	^Seal No	---
		^Y/Ref	---
		Item Description	Petroleum Products

After Additivation - Cargo Treatment

ESOJNJ23001891-019

Test	Method	Unit	Result
Volume Pumped	IP 387B/17	mL	130
Final Pressure	IP 387B/17	kPa	105
FBT	IP 387B/17	--	2.52

Reduced Emissions

Element	(g/kWh)	(g/kWh)	%
NOx	11.909	11.672	-1.99
SO ₂	0.103	0.051	-50.93
CO	0.666	0.623	-6.54
CO ₂	611.140	631.683	3.36
O ₂	1350.104	1431.703	6.04
HC	0.623	0.247	-60.28
PM2.5>	0.056	0.033	-40.68
PM2.5-PM10	0.010	0.007	-21.92
PM<10	0.012	0.007	-38.85
PM Total	0.079	0.049	-38.17

Study completed by Istanbul Technical University – Marine Institute

Fuel Economy

Reported by our customers

- Oil Ditas – 4%
- Oil ELIN Shipping – 12%
- Oil China Energy – 6%
- Oil Independent Tug – 10.5%

China Energy Shen Hua Profile

- ④ 40 Ships
- ④ RMK fuel (IFO 380)
- ④ Average consumption 25 MT per day
- ④ Daily Consumption
 - ④ HSFO \$12,178/DAY
- ④ Annual Consumption per ship (200 days)
 - ④ \$2,435,600 / ship
 - ④ Fuel Right 30K – 1:30,000 treatment Ratio
 - ④ Cost for treatment \$3.136/MT
 - ④ 6% Reported fuel economy improvement
 - ④ $6\% \times 2,435,600 = \text{USD } \$146,136$
 - ④ Annual cost of treatment
 - ④ USD \$24,000
 - ④ Total savings USD \$122,136 per ship
 - ④ Total fleet savings
 - ④ $40 \times \$122,136 = \$4,885,440$

China Energy Shen Hua Emissions

- ⌚ Test study provided
 - ⌚ China Classification Society (CCS)
 - ⌚ GB/T2589-2008: General principles for calculation of the comprehensive energy consumption
 - ⌚ GB/T13234-2009: Enterprise energy saving calculation method
 - ⌚ Other methods included for emission calculations
- ⌚ ↓ 653.18 tons CO²
- ⌚ ↓ 2.10 tons SOx
- ⌚ ↓ 17.55 tons NOx

Field measurements in a 2-stroke ship engine

The determination of fuel consumption can be done by the following methods:

- Use of data from fuel flow meters installed on board.
- Measurement of exhaust emissions using appropriate portable equipment and calculation of fuel consumption using the 'Carbon balance' method.
- The components of the exhaust gas that can be measured are CO₂, CO, HC, while additional pollutants (NO_x (NO, NO₂), SO_x) can be measured.
- Measurement of exhaust gas flow and air-fuel equivalence ratio (λ) (method under development and evaluation), using appropriate portable equipment.
- Consumption shall be expressed both in absolute fuel mass delivery units (kg/h or tn/day) and in specific fuel consumption (BSFC or SFOC) (g/kWh).
- The measured fuel consumption shall be corrected by the calorific value of the standard fuel.

Field measurements in a 2-stroke ship engine

- Elemental analysis of the fuel is necessary, which ideally includes the carbon content and hydrogen content, and the lower calorific value of the fuel used.
- Fuel consumption will be determined at the following operating points (loads) of the engine: 10%, 25%, 50%, 75%, 90%.
- As a reference, it would be ideal to make available data from shop tests and sea trials.

Actual Fuel Oil Data

- Total fuel oil consumption
- Fuel Oil consumption main engine
- Fuel oil consumption auxiliaries
- Fuel Characteristics (LHV, Density etc)

Main Engine Data

- Propeller Pitch (%)
- Propeller RPM (RPM)
- Shaft Torque/Power (kW)

Actual Navigation Data

- Ship position (lat/long)
- Course over Ground (C.O.G.) (°)
- Speed over Ground (S.O.G.) (KN)
- Speed Through Water (S.T.W.) (KN)
- True Wind Speed (m/s)
- True Wind Direction (°)
- Water Under Keel (m)

Cargo Data

- Cargo Loaded (Carried) (t)
- Draught FWD (m)
- Draught Aft (m)
- EEOI (gr/ton.miles)

DATA TO BE RECORDED

Emissions

- CO2 – port
- CO2 – starboard
- CO – port
- CO – starboard
- CxHy – port
- CxHy – starboard
- SOx –Port
- SOx – starboard
- H2S - port
- H2S – starboard
- NOx – port
- NOx - starboard
- O2 – port
- O2 - starboard

Running Voyage Fuel Oil Data

- Total FOC Main Engine this voyage (t)
- Total FOC Auxiliaires this voyage (t)
- Total VLSFO consumption this voyage (t)
- Total MGO consumption this voyage (t)

Total Counters

- Distance (Nm)
- All Fuel Oil (T)
- VLSFO (T)
- MGO (T)
- Total Main Engine (T)
- Total Auxiliaries (T)

Particulates

- Total
- Opacity
- PM10
- PM2.5

Ship Missions and Sea Conditions Example

Ship Missions and Sea Conditions		Voyages		
		I	II	III
Transit A (Calm Sea State: SM = 5%)	Ship Speed V_A (kn)	13.90	12	10
	Time T_A (h)	4.27	7.89	7.89
	Sea Margin SM_A (-)	1.05	1.05	1.05
Transit B (Heavy Sea State: SM = 30%)	Ship Speed V_B (kn)	12	12	10
	Time T_B (h)	5.26	5.26	5.26
	Sea Margin SM_B (-)	1.3	1.3	1.3
Transit C (Normal Sea State: SM = 15%)	Ship Speed V_C (kn)	13.66	12	10
	Time T_C (h)	38.62	41.02	51.85
	Sea Margin SM_C (-)	1.15	1.15	1.15
The whole transit voyage	Average Ship Speed (kn)	13.50	12.00	10.00
	Total Transit Time (h)	48.15	54.17	65.00
	Total Transit Distance (n mile)	650	650	650
	Average Sea Margin (-)	1.15	1.15	1.15

Thank You

Questions?

